
IJSRSET162510 | Received :06Sep2016 | Accepted :03 October 2016 | September-October-2016 [(2)5: 143-149] 

© 2016 IJSRSET | Volume 2 | Issue 5 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099 
Themed Section: Engineering and Technology 

 

143 

 
Design of 16 bit Arithmetic and Logical Unit Using Vivado 14.7 

and Implementation on Basys 3 FPGA Board 
 

Prachi Sharma1, G. Rama Laxmi2, Arun Kumar Mishra3 
 

1
Student, EC Department, Bhabha College of Engineering, Bhopal, India 

2,3
Assistant Professor, EC Department, Bhabha College of Engineering, Bhopal, India 

 

 

ABSTRACT 
 

This paper primarily deals with the construction of arithmetic Logic Unit (ALU) using Hardware Description 

Language (HDL) using Xilinx Vivado 14.7 and implement them  on Field Programmable Gate Arrays (FPGAs) to 

analyze the design parameters. ALU of digital computers is an aspect of logic design with the objective of 

developing appropriate algorithms in order to achieve an efficient utilization of the available hardware. The 

hardware can only perform a relatively simple and primitive set of Boolean & arithmetic operations and are based 

on a hierarchy of operations that are built by using algorithms employing the hardware. Speed, power and utilization 

of ALU are the measures of the efficiency of an algorithm. In this paper, we have simulated and synthesized the 

various parameters of ALUs by using VHDL on Xilinx Vivado 14.7 and Basys 3 Artix 7 FPGA board. 

Keywords : FPGA, ALU, XILINX Vivado 14.7, Basys 3 Artix 7 FPGA Board 

 

 

I. INTRODUCTION 

 

The Design and implementation of FPGA based 

Arithmetic Logic Unit is of core significance in digital 

technologies as it is an integral part of central 

processing unit. ALU is capable of calculating the 

results of a wide variety of basic arithmetical and 

logical computations. The ALU takes, as input, the data 

to be operated on (called operands) and a code, from the 

control unit, indicating which operation to perform. The 

output is the result of the computation. Designed ALU 

will perform the following operations:  

 Arithmetic operations  

 Bitwise logic operations  

 

All the modules described in the design are coded using 

VHDL which is a very useful tool with its degree of 

concurrency to cope with the parallelism of digital 

hardware. The top level module connects all the stages 

into a higher level at Register Transfer Logic (RTL). 

RTL describes the requirements of data and control 

units in terms of digital logic to execute the desired 

operations. Each instruction from the architecture's 

instruction set is defined in detail in the RTL. Once 

identifying the individual approaches for input, output 

and other modules, the VHDL descriptions are run 

through a VHDL simulator and then is downloaded the 

design on FPGA board for verification.  

 

As FPGA has an application that it can incorporates 

much logic on a single FPGA. So as floating point ALU 

has many operations to be performed in the computer 

we are using an FPGA IC to implement it. The 

operations performed by the FPU are addition, 

subtraction, multiplication, division and logical 

operations as AND, OR, NOT etc. FPU mainly work on 

Real as well as integers value.FPGA is an integrated 

circuit designed to be configured by the customers or 

designer after manufacturing- hence “Field 

Programmable”. The FPGA configuration is generally 

specified using a hardware description language, similar 

to that used for an application specific integrated circuit 

(ASIC). 

 

FPGA contain programmable logic components called 

“Logic Blocks”, and a hierarchy of reconfigurable 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

 144 

interconnects that allows the block to be wired together. 

Logic blocks can be configured to perform complex 

combinational function or merely simple logic gates like 

AND and OR. In most FPGA’s, the logic blocks also 

include memory elements which may be simple flip 

flops or more complete blocks of memory. 

 

 
Figure 1. Symbol of 16-bit ALU 

 

II. METHODS AND MATERIAL 

 

1. Design of Top Level (RTL) Vhdl Module of 8 -

Bit Arithmetic Logical UNIT (ALU)  

 

High level design methodology allows managing 

thedesign complexity in a better way and reduces the 

designcycle. [10]. A high-level model makes the 

description andevaluation of the complex systems easier. 

RTLdescription specifies all the registers in a design, 

and thecombinational logic between them. The registers 

aredescribed either explicitly through 

componentinstantiation or implicitly through inference 

[3]. Thecombinational logic is described by logical 

equations,sequential control statements subprograms, or 

throughconcurrent statements [3]. Designing at a higher 

level ofabstraction delivers the following benefits [10]. 

 

 Manages complexity: Fewer lines of code 

improves productivity and reduces error. 

 Increases design reuse: Implementation of 

independent designs as cell library & reuse in 

various models. 

 Improves verification: Helps to run process faster. 

 

 

 

 

2. ALU Block Diagram 

 

 

Figure 2.Block Diagram of ALU [6].  

 

3. Operation of ALU 

 

There are two kinds of operation which an ALU can 

perform first part deals with arithmetic computations 

andis referred to as Arithmetic Unit. It is capable of 

addition,subtraction, multiplication, division, increment 

anddecrement. The second part deals with the Gated 

resultsin the shape of AND, OR, XOR, inverter, rotate, 

left shiftand right shift, which is referred to as Logic 

Unit. Thefunctions are controlled and executed by 

selectingoperation or control bits. 

 

Table 2.1: ALU Operations 

 

 
 

 

 

 

a. Adder/Subtractor Unit:  



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

 145 

 

In our ALU we have used the concept of adder-

subtractor where the same circuit performs the functions 

of both adder and subtractor as shown in fig 3. The 

adder functions based on the concept of look ahead 

carry adder. The subtractor just uses anxor gate as an 

extra circuitry 

 

The block diagram for an adder-subtractor circuit thus 

can be as below. To perform this we used carry look 

ahead adder, The carry look ahead adder reduces the 

consumption of power without compromising the speed 

of the adder [2]. This is achieved by generating carry 

simultaneously from all the bits. An n-bit carry look-

ahead adder is formed from n stages. Carry look-ahead 

can be extended to larger adders. For example, four 1bit 

adders can be connected to form a 4bit adder and such 

four 4-bit adders can be connected to form the 16-bit 

adder. 

 

 
Figure 3.Adder/Subtractor Unit 

 

The use of a single circuit for both adder and subtractor 

reduces power consumption and also area. The 

operation of the adder-subtractoris based on the S1 and 

S0 control bits. 

 

Table 2.2: Operations of adder/subtractor circuit 

 

 
 

b. Logic Unit:  

 

Fig 4 shows the logic unit in ALU, which performs 4 

different logical operations AND, OR, XOR and NOT 

operations. Bitwise operation is performed on the two 

inputs. The operation to be performed is decided by two 

selections s1 and so as shown in Table 2.3. 

 

Figure4.Logic Unit 

 

Table 2.3: Logical Operations 

 
 

C. Shifter Unit:  

 

Logical shift is an efficient way to perform division and 

multiplication of integers by powers of two. Shifting left 

by k bits on a binary number is equivalent to 

multiplying it by 2
k
.Similarly shifting right by k bits on 

an binary number is equivalent to dividing it by 2
k
. For 

example, consider the binary number 0001 0111. 

 

 Arithmetic shifts  

 

Arithmetic shifts can be useful as efficient ways of 

performing multiplication or division of signed integers 

by powers of two. Shifting left by n bits on a signed or 

unsigned binary number has the effect of multiplying it 

by 2n. Shifting right by n bits on a two's complement 

signed binary number has the effect of dividing it by 2n, 

but it always rounds down (towards negative infinity). 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

 146 

Arithmetic left shift [6] move bits to the left, same order 

throw away the bit that pops off the MSB introduce a 0 

into the LSB. This is same as logical left shift. It is 

shown in figure 5. Arithmetic right shift move bits to 

the right, same order throw away the bit that pops off 

the LSB reproduce the original MSB into the new MSB 

as shown in figure 6. 

 

 
 

Figure5 :Arithmetic Left Shift 

 

 
Figure 6 :Arithmetic Right Shift 

 

 Logical Shifts 

Logical shift is a bitwise operation that shifts all the bits 

of its operand. The two base variants are the logical left 

shift and the logical right shift. This is further 

modulated by the number of bit positions a given value 

shall be shifted, like "shift left by 1" or a "shift right by 

n". Unlike an arithmetic shift, a logical shift does not 

preserve a number's sign bit or distinguish a number's 

exponent from its mantissa; every bit in the operand is 

simply moved a given number of bit positions, and the 

vacant bit-positions are filled in, usually with zeros [7]. 

Logical left shift move bits to the left, same order throw 

away the bit that pops off the MSB introduce a 0 into 

the LSB as shown in figure 7. Logical right shift move 

bits to the right, same order throw away the bit that pops 

off the LSB introduce a 0 into the MSB as shown in 

figure 8. 

 

 
Figure7.Logical Left Shift 

 
Figure 8.Logical Right Shift 

 

Fig 9 shows the diagram of Shifter unit which performs 

arithmetic/Logical, Right and Left shifts by using 

Multiplexer and table 2.4 shows shifter operations 

controlled by 2 selection lines s1 and s0. 

 

 
Figure9.Shifter Unit 

 

Table 2.4: Shifter unit Operations 

 

 
 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

 147 

D. Multiplier Unit 

 

The multiplication algorithm for an N bit multiplicand 

by N bit multiplier is shown below, AND gates are used 

to generate the Partial Products, PP, If the multiplicand 

is N-bits and the multiplier is M-bits then there is N* M 

partial product. The way that the partial products are 

generated or summed up is the difference between the 

different architectures of various multipliers. 

Multiplication of binary numbers can be decomposed 

into additions. Consider the multiplication of two 8-bit 

numbers A and B to generate the 16 bit product P. 1. If 

the LSB of Multiplier is „1‟, then add the multiplicand 

into an accumulator. 2. Shift the multiplier one bit to the 

right and multiplicand one bit to the left. 3. Stop when 

all bits of the multiplier are zero. Speed of the Processor 

mainly depends on Multiplier performance. There are 

Several Techniques for design of Multipliers. We need 

to select the appropriate technique based on factors 

delay, throughput, area and design complexity 

 

Here we used array multiplier in my ALU. An array 

multiplier is a digital combinational circuit that is used 

for the multiplication of two binary numbers by 

employing an array of full adders and half adders. This 

array is used for the nearly simultaneous addition of the 

various product terms involved. The Hardware 

requirement for an m x n bit array multiplier is (m x n) 

AND gates, (m-1)x n Adders in which n HA(Half 

Adders) and (m-2) x n FA(full adders).  

 

Figure 10 shows 4x4 array multiplier which uses 16 

AND gates, 12 adders in which 4 Half Adders and 8 full 

adders. In the same way we can extend this to 8 bit. The 

multiplication of two 8 bit numbers results in 16 bits. 

 
Figure 10.4x4 Array Multiplier 

III. RESULTS AND DISCUSSION 

 
A. Implementation Of 16-Bit ALU on Basys 3 

FPGA Board: 

 

Software Approach 

 

The VHDL software interface used in this design 

reduces the complexity and also provides a graphic 

presentation of the system. The key advantage of VHDL 

when used for systems design is that it allows the 

behavior of the required system to be described 

(modeled) and verified (simulated) before synthesis 

tools translate the design into real hardware (gates and 

wires). This software not only compiles the given 

VHDL code but also produces waveform results. 

 

A typical design flow consists of creating model(s), 

creating user constraint file(s), creating a Vivado project, 

importing the created models, assigning created 

constraint file(s), optionally running behavioral 

simulation, synthesizing the design, implementing the 

design, generating the bitstream, and finally verifying 

the functionality in the hardware by downloading the 

generated bitstream file then typical design flow 

targeting the Artix-7 based Basys3 or Nexys4 DDR 

boards. 

 

The Procedure to create a Project in Vivado is as 

Follows: 

 

 Create a Vivado project sourcing HDL model(s) 

and targeting a specific FPGA device located on 

the 

 Basys3 or Nexys4 DDR boards 

 Use the provided user constraint file (XDC) to 

constrain pin locations 

 Simulate the design using the XSIM simulator 

 Synthesize and implement the design 

 Generate the bitstream 

 Download the design and verify the 

functionality 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

 148 

 
Figure 11. Typical Design Flow 

 

Hardware Approach 

 

The VHDL code which implies the hardware part of 

ALU is downloaded on FPGA processor using JTAG 

cable interfacing PC and the hardware element. A final 

point is that when a VHDL model is translated into the 

"gates and wires" that are mapped onto a programmable 

logic device i.e FPGA, and then it is the actual hardware 

being configured, rather than the VHDL code being 

"executed" as if on some form of a processor chip. 

 

The Basys3 board is a complete, ready-to-use digital 

circuit development platform based on the latest Artix-7 

Field Programmable Gate Array (FPGA) from Xilinx. 

With its high-capacity FPGA (Xilinx part number 

XC7A35T-1CPG236C), low overall cost, and collection 

of USB, VGA, and other ports, the Basys3 can host 

designs ranging from introductory combinational 

circuits to complex sequential circuits like embedded 

processors and controllers. It includes enough switches, 

LEDs, and other I/O devices to allow a large number of 

designs to be completed without the need for any 

additional hardware, and enough uncommitted FPGA 

I/O pins to allow designs to be expanded using Diligent 

Pmods or other custom boards and circuits. 

 

The Artix-7 FPGA is optimized for high performance 

logic, and offers more capacity, higher performance, 

and more resources than earlier designs. Artix-7 35T 

features include: 

 

 33,280 logic cells in 5200 slices (each slice 

contains four 6-input LUTs and 8 flip-flops)  

 1,800 Kbits of fast block RAM  

 Five clock management tiles, each with a phase-

locked loop (PLL)  

 90 DSP slices  

 Internal clock speeds exceeding 450MHz  

 On-chip analog-to-digital converter (XADC). 

 

 
Figure 12.The Basys3 

 

The Basys3 also offers an improved collection of ports 

and peripherals, including: 

 16 user switches.  

 16 user LEDs. 

 5 user pushbuttons. 

 4-digit 7-segment display. 

 Three Pmod connectors. 

 Pmod for XADC signals. 

 12-bit VGA output. 

 USB-UART Bridge. 

 Serial Flash. 

 Digilent USB-JTAG port for FPGA 

programming and communication. 

 USB HID Host for mice, keyboards and 

memory sticks. 

 

The Basys3 works with Xilinx’s new high-performance 

Vivado™ Design Suite. Vivado includes many new 

tools and design flows that facilitate and enhance the 

latest design methods. It runs faster, allows better use of 

FPGA resources, and allows designers to focus their 

time evaluating design alternatives. The System Edition 

includes an on-chip logic analyzer, high-level synthesis 

tool, other cutting-edge tools, and the free WebPACK 

version allows Basys3 designs to be created at no 

additional cost. 

 

The design consists of some inputs directly connected to 

the corresponding output LEDs. Other inputs are 

logically operated on before the results are output on the 

remaining LEDs as shown in Fig 13 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

 149 

 
Figure 13.Completed Design 

 

B. Simulation Result of 16 Bit ALU Design 

 

OR Operation 

 

 
Figure 12. Waveform of OR operation. 

 

XOR Operation 

 

 
Figure 13.Waveform of XOR operation 

 

IV. CONCLUSION 

 

This study helped to understand the complete flow of RTL 

design, starting from designing a top level RTL module for 

16-bit ALU using hardware description language, VHDL. 

Verification of the designed RTL code using simulation 

techniques, synthesis of RTL code to obtain gate level 

netlist using Xilinx Vivado ISE tool and Arithmetic Logic 

Unit was successfully designed andimplemented using 

Very High Speed HardwareDescriptive Language and 

Xilinx Basys 3 FieldProgrammable Gate Array.The 

designed arithmetic unit operates on 32-bit operands. It can 

be designed for 64-bit operands to enhance precision. It 

can be extended to have more mathematicaloperations like 

trigonometric, logarithmic and exponential functions. 

Arithmetic unit has been designed to perform five 

arithmetic operations, addition, subtraction, multiplication, 

division and square root, on floating point numbers. 

 

V. REFERENCES 

 
[1] B. Stephen Brown, V.Zvonko, "Fundamentals of 

digital logic with VHDL Design"2ndEdition,Mc Graw 

Hill International Edition, 2005. 

[2] Charles H.Roth, Jr., "Digital System Design using 

VHDL", PWS Publishing Company, 2006. 

[3] Douglas L. Perry, VHDL, third edition, McGraw-Hill, 

pp. 60-63, 238, July 1999. 

[4] Mark Zwolinski, "Digital System Design with VHDL", 

Prentice Hall, 2000. 

[5] Pedroni, "Digital Logic Design using VHDL". 

[6] S.Kaliamurthy, R.Muralidharan, "VHDL Design of 

FPGA Arithmetic Processor" International Conference 

on Engineering and ICT, 2007. 

[7] Prof. S. Kaliamurthy & Ms. U. Sowmmiya, "VHDL 

design of arithmetic processor" ,Global Journals 

Inc.(USA) , November 2011. 

[8] Landauer, R., "Irreversibility and heat generation in the 

computing process", IBM J.Research and 

Development, vol. 5 (3): pp. 183-191, 1961. 

[9] Bennett, C.H., "Logical reversibility of computation", 

IBM J. Research and Development, vol. 17: pp. 525-

532, 1973.  

[10] B. Raghu Kanth1, B. Murali Krishna2, G. Phani 

Kumar3, J. Poornima4, K. Siva Rama Krishna " A 

Comparitive Study Of Reversible Logic 

Gates"International Journal of VLSI & Signal 

Processing Applications, Vol.2,Issue 1, Feb 2012.  

[11] Himanshu Thapliyal ,Nagarajan Ranganathan "A New 

Reversible Design of BCD Adder " IEEE conference 

on Design and automation, 2011 pp.1-4.  

[12] Zhijin Guan, Wenjuan Li, Weiping Ding, Yueqin 

Hang, Lihui Ni"An Arithmetic Logic Unit design 

based on reversible logic gates "IEEE Pacific Rim 

Conference on Communications, Computers and 

Signal Processing (PacRim), 2011.  

[13] Thapliyal H, Srinivas M.B, "Novel Reversible TSG 

Gate and Its Application for Designing Components of 

Primitive Reversible/Quantum ALU,"Fifth 

International Conference on Information, 

Communications and Signal Processing, 2006.  

[14] H.Thapliyal,M.B Srinivas "Novel design and reversible 

logic synthesis of multiplexer based full adder and 

multipliers" 48th Midwest Symposium on Circuits and 

Systems, 2005. 


